The Z machine at Sandia National Laboratory. Due to the extremely high voltage, the power feeding equipment is submerged in concentric chambers of 2 megalitres (2,000 m³) of transformer oil and 2.3 megalitres (2,300 m³) of deionized water, which act as insulators. Nevertheless, the electromagnetic pulse when the machine is discharged causes impressive lightning, referred to as a "flashover", which can be seen around many of the metallic objects in the room.

The Z machine is the largest X-ray generator in the world and is designed to test materials in conditions of extreme temperature and pressure. Since its refurbishment in October 1996[1] it has been used primarily as an inertial confinement fusion (ICF) research facility. Operated by Sandia National Laboratories, it gathers data to aid in computer modeling of nuclear weapons and eventual nuclear fusion pulsed power plants. The Z machine is located at Sandia's main site in Albuquerque, New Mexico.


The Z machine origins can be traced from the Department of Energy need to replicate in a lab environment the fusion reactions of a thermonuclear bomb, to better understand the physics involved.

Since the 1970s the DoE had been looking into ways to generate electricity from fusion reactions, with continuous reactions such as Tokamaks or discrete fusion of small balls of light atoms. Since at the time lasers were far from having the required power, the main approach considered was Heavy Ion Fusion.[2] However major advances such as Q-switching and Mode-locking made lasers an option (culminating into the National Ignition Facility) and the Heavy Ion Fusion programs became more or less dormant. In 1985 the review of DoE's program by the National Academies[3] stated "The energy crisis is dormant for the time being". Heavy Ion Fusion machines were tasked to help military research improve nuclear bombs.

The first research at Sandia dates back from 1971[4] where Gerold Yonas[5][6] initiated and directed the particle-beam fusion program.

In the December 1976 issue of Popular Science[7] and in 1976 conference proceedings published in 1977, an article titled "Particle Beam Fusion Research"[8] describes early work and first generation machines: Hydra (1972); Proto I (1975); Proto II (1977); EBFA/PBFA (1980). In 1985 the PBFA-II is created.[9][10] Sandia continues to target Heavy Ion Fusion at a slow pace despite the National Academies report.

The November 1978 issue of Scientific American carries Yonas' first general public article "Fusion power with particle beam"[11]

Meanwhile defense-related research was also ongoing at Sandia with the Hermes III machine and Saturn (1987), upgraded from PBFA-I, which operated at lower total power than PBFA-II but advanced Sandia's knowledge in high-voltage and high current and was therefore a useful predecessor to the Z machine. In 1996 the US Army published a report[12] on the decommissioning of the Aurora Pulsed Radiation Simulator. This report is useful in understanding ties between nuclear arms testing and inertial fusion energy research.

Also in 1996 the PBFA-II machine is once again upgraded[13] into PBFA-Z[1] or simply "Z machine" described for the first time to the general public on August 1998 in Scientific American[14][15]

Physics of the Z machine

The Z machine uses the well known principle of Z-pinch where the fast discharge of capacitors in a tube causes its collapse towards its centerline, under the influence of Lorentz forces (current, magnetic field, force). Bennet researched successfully the application of Z-pinches to plasma compression. The Z machine layout is cylindrical. On the outside it houses huge capacitors discharging in Marx generators which discharge in about one microsecond. Yonas then uses a system to divide this time by a factor 10, using the dielectric power of water, to enable the creation of 100ns discharges.

But this effort was not successful for Heavy Ion Fusion, by lack of sufficient focalization of the beams, despite the high power used. It was known since a long time that the Lorentz forces were radial but the current flow was highly instable and rotated along the cylinder which causes twisting of the imploding tube therefore decreasing the quality of the compression.

A Russian, Valentin Smirnov, then had the idea of replacing the tube (called “Liner”) by a wire array, to fight the azimuthal flow of the current, and therefore fight the MHD instability. The Angara V[16] facility of the Kurchatov Institute had been built for the same reason: to help simulate and design the second stage of hydrogen bombs and test the effect of high power x-rays on nuclear missiles warheads. The space inside the wire array was filled by polystyrene, which helps homogenise the X-ray flux. Any country developing thermonuclear weapons has its own Z machine, but those not using water lines had long rising pulses (for example 800ns in the Sphinx, the French machine at Gramat). In the UK, the Magpie[17] machine was situated at the Imperial College under Malcolm Haines.

By removing the polystyrene core Sandia was able to obtain a thin one and a half millimetre plasma cord in which 10 million amperes flowed with 90 megabars of pression.

Early operation 1996-2006

The key attributes of Sandia’s Z machine[18] are its 18 million amperes which discharge in less than 100 nanoseconds. The array of tungsten wires is called a liner[19] In 1999, Sandia tests the idea of nested wire arrays[20] the second array, out of phase with the first, compensating the Rayleigh-Taylor instabilities of the first. In 2001, Sandia introduces the Z-Beamlet laser (from surplus equipment of the National Ignition Facility).as a tool to better image the compressing pellet.[21] This confirms the good shaping uniformity of pellets compressed by the Z machine. Sandia announced the fusing of small amounts of deuterium in the Z machine on April 7, 2003.[22]

Besides being used as an X-ray generator, the Z machine propelled small plates at 34 kilometres a second, faster than the 30 kilometres per second that Earth travels in its orbit around the Sun, and three times Earth's escape velocity.[23] It also successfully created a special, hyperdense "hot ice" known as ice VII, by quickly compressing water to pressures of 70,000 to 120,000 atmospheres (7 to 12 GPa).[24]

A good overview of the different missions of the Z machine can be found in the 2002 Trivelpiece committee report[25] which reviewed the pulsed power activities at Sandia.

During this period the power of X-ray produced jumps from 10 to 300TW.[26] In order to target the next milestone of fusion breakeven, another upgrade is then necessary[27]... but not before melting diamond.[28]

Two billion degrees

At the beginning of 2006, the Z machine produced plasmas with announced temperatures in excess of 2 billion kelvins (2 GK, 2×109 K) or 3.6 billion °F, even reaching a peak at 3.7 GK or 6.6 billion °F.[29][30][31] It was achieved in part by replacing the tungsten wires with thicker steel wires. This temperature, which enables a 10% to 15% efficiency in converting electrical energy to soft x-rays, was much higher than anticipated (3 to 4 times the kinetic energy of the incoming wires on axis). The Guinness Book Of Records listed it as the highest human-achieved temperature[citation needed] (the Relativistic Heavy Ion Collider at Brookhaven National Laboratory has produced higher temperatures, but only within nuclear matter;[32] also the Large Hadron Collider has produced higher temperatures[33]). The origin of this extra energy still remains unexplained, but it has been theorized that small-scale MHD turbulence and viscous damping would convert magnetic energy into thermal energy of the ions, which then would transfer their energy to the electrons through collisions.[30][31]


Proposed model of a 1 petawatt LTD-based z-pinch accelerator.
104 m diameter, 70 megaamperes, 24 megavolts.

A $60 million (raised to $90 million) retrofit program called ZR (Z Refurbished) was announced in 2004 to increase its power by 50%. The Z machine was dismantled in July 2006 for this upgrade, including the installation of newly designed hardware and components and more powerful Marx generators. The de-ionized water section of the machine has been reduced to about half the previous size while the oil section has been expanded significantly in order to house larger intermediate storage lines (i-stores) and new laser towers, which used to sit in the water section. The refurbishment was completed in October 2007.[34] The newer Z machine can now shoot 27 million amperes (instead of 18 million amperes previously) in 95 nanoseconds. The radiated power has been raised to 350 terawatts and the X-ray energy output to 2.7 megajoules. However the maximum temperature the new version may reach with the same record holder stainless steel wire-array liner used in 2005 is not yet known.

Sandia's roadmap includes another Z machine version called ZN (Z Neutron) to test higher yields in fusion power and automation systems. ZN is planned to give between 20 and 30 MJ of hydrogen fusion power with a shot per hour using a Russian Linear Transformer Driver (LTD) replacing the current Marx generators.[35] After 8 to 10 years of operation, ZN would become a transmutation pilot plant capable of a fusion shot every 100 seconds.[36]

The next step planned would be the Z-IFE (Z-inertial fusion energy) test facility, the first true z-pinch driven prototype fusion power plant. It is suggested it would integrate Sandia's latest designs using LTDs. Sandia labs recently proposed a conceptual 1 petawatt (1015 watts) LTD Z-pinch power plant, where the electric discharge would reach 70 million amperes.[37] As of 2012 Fusion shot simulations at 60 to 70 million amperes are showing a 100 to 1000 fold return on input energy. Tests at the Z machine's current design maximum of 26-27 million amperes are set to begin in 2013, where proof of concept simulation verification, and Fusion break even, will be pursued.[38]

The ultra-high temperatures reached in 2006 (2.66 to 3.7 billion kelvins) are much higher than those required for the classical hydrogen, deuterium and tritium fusion previously considered. They could allow, in theory if not in practice, the fusion of light hydrogen atoms with heavier atoms such as lithium or boron. These two possible fusion reactions do not produce neutrons, and thus no radioactivity or nuclear waste, so they open for the first time the possibility of human-made clean aneutronic fusion.[citation needed]

Z-Pinch Inertial Fusion Energy program

The Sandia Laboratories Z-IFE project[39] aims to solve the practical difficulties in harnessing fusion power. Major problems include producing energy in a single Z-pinch shot, and quickly reloading the reactor after each shot. By their early estimates, an implosion of a fuel capsule every 10 seconds could economically produce 300 MW of fusion energy.

See also


  1. ^ a b
  2. ^
  3. ^
  4. ^
  5. ^
  6. ^
  7. ^ page 66
  8. ^ page 182
  9. ^
  10. ^
  11. ^
  12. ^
  13. ^
  14. ^
  15. ^
  16. ^
  17. ^
  18. ^
  19. ^
  20. ^
  21. ^
  22. ^ Z produces fusion neutrons, Sandia scientists confirm, Sandia's press release (April 7, 2003).
  23. ^ Z fires objects faster than Earth moves through space, Sandia's press release (June 6, 2005).
  24. ^ Ice created in nanoseconds by Sandia’s Z machine, Sandia's press release (March 15, 2007).
  25. ^
  26. ^
  27. ^
  28. ^
  29. ^ Sandia’s Z machine exceeds two billion degrees Kelvin, Sandia's press release (March 8, 2006).
  30. ^ a b Abstract of Malcolm Haines' paper published in Physical Review Letters 7, Vol.96 (February 24, 2006).
  31. ^ a b Analysis of Malcolm Haines' paper by Jean-Pierre Petit (June 25, 2006).
  32. ^ Perfect Liquid Hot Enough to be Quark Soup
  33. ^ Atom-smashing scientists reach highest ever recorded man-made temperature - 100,000 TIMES hotter then the Sun's interior
  34. ^ Successful 'shots' signal re-opening of Sandia's giant Z accelerator, Sandia's press release (17 October 2007).
  35. ^ Rapid-fire pulse brings Sandia’s Z method closer to goal of developing high-yield fusion reactor, Sandia's press release (April 27, 2007).
  36. ^ Z-Inertial Fusion Energy: Power Plant Final Report FY 2006, Sandia Report SAND2006-7148 (October 2006).
  37. ^ W.A. Stygar et al., Architecture of petawatt-class z-pinch accelerators (October 2007).
  38. ^
  39. ^ An introduction to the Z-IFE project may be found here.

External links